Многолетники

Оптимальный размер партии. Определение оптимального размера производимой партии Б) Расходы на перенастройку

Запасы играют как положительную, так и отрицательную роль в деятельности логистической системы. Положительная роль заключается в том, что они обеспечивают непрерывность процессов производства и сбыта продукции, являясь своеобразным буфером, сглаживающим непредвиденные колебания спроса, нарушение сроков поставки ресурсов, повышают надежность логистического менеджмента .

Негативной стороной создания запасов является то, что в них иммобилизуются значительные финансовые средства, которые могли бы быть использованы предприятием на другие цели, например, инвестиции в новые технологии, исследование рынка, улучшение экономических показателей деятельности предприятия.

Кроме того, большие уровни запасов готовой продукции препятствуют улучшению ее качества, так как предприятие, прежде всего, заинтересовано в реализации уже имеющейся продукции до вложения инвестиций в повышении ее качества. Исходя из этого, возникает проблема обеспечения непрерывности логистических и технологических процессов при минимальном уровне затрат, связанных с формированием и управлением различными видами запасов в логистической системе.

Один из методов эффективного управления запасами - определение оптимальных партий поставок груза, который позволяет оптимизировать расходы на транспортировку, хранение груза, а также избежать избытка или недостатка груза на складе.

Оптимальный размер партии q определяется по критерию минимума затрат на транспортировку продукции и хранение запасов.

Величина суммарных затрат рассчитывается по формуле (3.1):

где n - количество партий, доставляемых за расчетный период

где - средняя величина запаса (в тоннах), которая определяется из предположения, что новая партия завозится после того, как предыдущая полностью израсходована.

В этом случае величина рассчитывается по следующей формуле:

Функция общих затрат С имеет минимум в точке, где ее первая производная по q равна нулю, т.е.

В качестве размеров годового объема потребления продукции принимаем данные, полученные в результате прогнозирования методом регрессионного анализа : тыс. т/год; тариф на перевозку одной партии у.е./т; расходы, связанные с хранением запаса у.е./т.


Подставив заданные значения, получим:

При этом общие затраты составят:

Решение данной задачи графическим способом заключается в построении графиков зависимости , и , предварительно выполнив необходимые расчеты по определению , и .

Определим значение , и при изменении q в пределах от 900 до 800 с шагом 1200. Результат расчетов занесем в таблицу 3.1.

Таблица 3.1.

Значения , и

Размер партии, q Затраты, у.е.
6171,75 4937,4 4488,55 4114,5
10171,75 9937,4 9988,55 10114,5

По данным таблицы 3.1 построены графики зависимости затрат (транспортных, складских и суммарных) от размера партии (рис. 3.1).

Рисунок 3.1 Зависимость затрат от размера партии

Анализ графиков на рисунке 3.1 показывает, что затраты на транспортировку уменьшаются с увеличением размера партии, что связано с уменьшением количества рейсов. Затраты, связанные с хранением, возрастают прямо пропорционально размеру партии.

График суммарных затрат имеет минимум при значении q приблизительно равном 993 т, которое и является оптимальным значением размера партии поставки. Соответствующие минимальные суммарные затраты составляют 9937 у.е.

Произведем расчет оптимального размера партии в условиях дефицита при величине расходов, связанных с дефицитом

В условиях дефицита значение , рассчитанное по формуле (3.8) корректируется на коэффициент k , учитывающий расходы, связанные с дефицитом.

Величина расходов, связанных с дефицитом;

принимаем

Подставив значения, получим:

K=

Из этого следует, что в условиях возможного дефицита размер оптимальной партии поставки необходимо увеличить на 15%.

Данной статьей мы открываем небольшую серию публикаций, посвященных определению оптимального размера партии деталей, запускаемых в производство. Очевидно, что эта величина сказывается на экономических показателях, поэтому для каждого производителя важно правильно ее определять. Мы хотим рассказать об истории данного вопроса, о применяемых методах и о последних тенденциях.

Как только любой товар производится в количестве больше одной штуки возникают выбор: или мы можем сначала полностью сделать все разнородные детали одного изделия и только потом приступить к следующему, или мы делаем одинаковые (или подобные) детали сразу для всех изделий. Второй способ дает множество преимуществ: специализация рабочих мест, рациональное использование техники, стабильность качества, повышение производительности .

При производстве небольшого количества товара число одинаковых деталей равно числу готовых изделий. С ростом объема выпуска затраты на производство, связанные с наладкой оборудования, установкой приспособлений, сменой инструмента падают. Но это происходит до определенного предела. Дальнейший рост приводит к возрастанию затрат на хранение исходных материалов, полуфабрикатов в цехах и готовой продукции, значительные средства замораживаются в незавершенной продукции.

Эта проблема становится заметной даже для небольшой кустарной мастерской: «Где разместить дополнительное сырье, куда складывать готовые товары до того, как их купили и вывезли, где взять дополнительные средства на покупку большего объема материала?» Но для крупного предприятия все гораздо серьезнее – дополнительные склады, буферные зоны, а это не только дополнительные площади, но и техника, люди, отопление, организация логистики, учета.

Выходом является разбиение общего количества деталей на отдельные партии. Производство продукции на основе партий запуска-выпуска называется партионным.

О том, сколько одинаковых деталей запускать в производство, стали задумываться практически сразу после перехода от ручного способа изготовления товаров к машинному. Развитие крупносерийного и массового поточного производства в начале 20 века стимулировало разработку теорий оптимизации размера партий деталей. В течение многих лет эти модели совершенствовались. В конце 20 – начале 21 века производство стало принципиально меняться, что потребовало также новых подходов к распределению продукции по производственным партиям.

Очевидно, что с ростом размера партии частота переналадок оборудования, смены оснастки и инструмента уменьшается, операций по подготовке производства, а значит затраты на переналадки падают. Одновременно растут затраты на складирование (хранение). График зависимости суммарных затрат от размера партии имеет точку минимума. Характер изменений издержек показан на рисунке.

Определение размера партии, соответствующего этому минимуму затрат, и является задачей оптимизации. Методы расчета данной точки были разработаны еще в начале 20 века, причем не без интриг.

Исторически первым предложил формулу расчета оптимальной партии американец Форд Уитмен Харрис (Ford W. Harris). В 1913 он опубликовал свои расчеты. Откровенно говоря, вывод формулы оптимального размера партии не представлял какого-то теоретического прорывы в математике. Это достаточно простая задачка поиска минимума функции. Ценно было практическое знание особенностей экономики производства. Харрис работал инженером на электротехнической фирме и использовал для своего анализа свой опыт. При этому он не имел диплома — окончил только среднюю школу. Будучи самоучкой он был феноменально успешным – он опубликовал 70 статей и зарегистрировал 50 патентов.

В течение следующих десятилетий появлялись публикации других авторов по теме оптимального размера партии в производстве. Так как эти исследования являлись прикладными, то традиции ссылаться на первоисточники, как это принято в фундаментальной науке, еще не было.

В 1934 году появляется новая публикация в Harvard Business Review, в которой автор R.H. Wilson (Уилсон или Вильсон) снова без ссылки на предыдущие работы приводит формулу оптимального размера партии. И по странному стечению обстоятельств именно его имя дало название формуле и закрепилось в дальнейшей истории. Некоторые исследователи считают, что здесь не обошлось без конкуренции различных изданий и бизнес-школ (Гарвардской и Чикагской), которые поддерживали только своих авторов. В результате приоритет Харриса был через некоторое время забыт. И только в 1990 году в США была предпринята попытка разобраться с приоритетом и датой первой публикации по данной теме.

Но пока американцы разбирались в том, кто же первый научился рассчитывать оптимальный размер партий, немцы, соглашаясь с первенством Харриса, утверждают, что по настоящему развил эту тему впервые в 1929 году их соотечественник – Курт Андлер (Kurt Andler) и называют соответствующую формулу его именем, при этом ни о каком Уилсоне не упоминают.

Формула Андлера для оптимального размера партии деталей в простейшем варианте выглядит следующим образом:

где у min — оптимальный размер партии,

V — требуемый объем продукции за период времени (скорость сбыта),

C r — затраты, связанные со сменой партий (условно — на наладку),

C l — удельные расходы на складирование в периоде времени.

Формула Уилсона для оптимальной партии заказа товара на склад (про продажи или для переработки) выглядит аналогично. Но ее составляющие имеют несколько иной смысл и другие обозначения (в классическом виде):

где EOQ — экономичный размер заказа (economic order quantity – EOQ)),

Q — количество товара в год (Quantity in annual units),

P затраты на реализацию заказа (Placing an order cost),

C — затраты на складирование единицы товара в год (Carry costs) .

Кстати, американцы легко запоминают эту формулу с помощью мнемонической фразы: “The square root of two Q uarter P ounders with C heese.” Фразу легко перевести,

или — «корень квадратный из двух четвертьфунтовых с сыром». Здесь для россиян и вообще всех, кроме американцев требуется пояснение. «Четвертьфунтовым» американцы называют чизбургер из Макдональдса, вес которого традиционно составляет четверть фунта – 113,4 грамма.

За пределами США этот вид гамбургера имеет другие названия и в этой связи можно вспомнить знаменитый диалог двух киллеров Винсента и Джулса из фильма Тарантино «Криминальное чтиво». Один из бандитов в исполнении Траволты рассказывает о своей поездке в Европу, о том, что в Париже можно купить пиво в Макдональдсе и прочих «чудесах»:

— Знаешь как в Париже называют Quarter Pounder с сыром?

— А что они его называют не Quarter Pounder ?

— Нет, у них метрическая система, и они не знают, что такое … (опускаем ненормативную лексику) четверть фунта. Они называют его Роял Чизбургер.

— Роял Чизбургер??? А как они называют тогда Биг-Мак?

— Биг-Мак – это Биг-Мак, только они называют его Ле Биг-Мак.

— Ле Биг-Мак?! Ха-ха-ха…

Так что Винсент и Джулс могли бы с легкостью запомнить формулу оптимального объема товара и применять ее в своей деятельности.

В основу классической модели оптимальной партии Андлера-Уилсона положен целый ряд исходных допущений: производство без ограничений по мощностям, без промежуточных складов, спрос стабилен, возможность деления материалов на любой размер партий, затраты на склад постоянные, склад неограниченного объема, безграничный горизонт планирования, реализация товара происходит непосредственно после производства и т.д.

Каждое такое допущение является одновременно ограничением для применения модели в тех или иных конкретных условиях производства и могут служить основой для развития и усложнения модели.

Однако, результаты расчетов по простейшей классической формуле все-таки могут служить в качестве базовых величин для начальной оценки – точность оценки во многом зависит от того, как полно и точно мы учтем затраты связанные с запуском новой партии и затраты на хранение.

Мебельная промышленность в последнее время становится все более индивидуализированной, все чаще работа строится на основе заказов – если не от конечных клиентов, то от динамически пополняемого склада, выступающего практически в роли заказчика. В связи с этим тенденцией последнего десятилетия стала работа по принципу Losgrösse 1 – то есть размер партии от одной штуки. На этом мы остановимся подробнее в следующих статьях.

После того как сделан выбор системы пополнения запасов, необходимо количественно определить величину заказываемой партии, а также интервал времени, через который повторяется заказ.

Оптимальный размер партии поставляемых товаров и, соответственно, оптимальная частота завоза зависят от следующих факторов:

¾ объем спроса (оборота);

¾ расходы по доставке товаров;

¾ расходы по хранению запаса.

В качестве критерия оптимальности выбирают минимум совокупных расходов по доставке и хранению.

И расходы по доставке и расходы по хранению зависят от размера заказа, однако характер зависимости каждой из этих статей расходов от объема заказа, разный.

Расходы по доставке товаров при увеличении размера заказа очевидно уменьшаются, так как перевозки осуществляются более крупными партиями и, следовательно, реже. График этой зависимости, имеющей форму гиперболы, представлен на рис. 12.1

Рис. 12.1 Зависимость расходов на транспортировку от размера заказа

Расходы по хранению растут прямо пропорционально размеру заказа. Эта зависимость графически представлена на рис. 22.2

Рис. 12.2 Зависимость расходов на хранение запасов от размера заказа

Сложив оба графика, получим кривую, отражающую характер зависимости совокупных издержек по транспортировке и хранению от размера заказываемой партии (рис. 22.3).

Рис. 12.3 Зависимость суммарных расходов на хранение и транспортировку от размера заказа (Оптимальный размер заказа Q*)

Кривая суммарных издержек имеет точку минимума, в которой суммарные издержки будут минимальны. Абсцисса этой точки Q* дает значение оптимального размера заказа.

Задача определения оптимального размера заказа, наряду с графическим методом, может быть решена и аналитически. Для этого необходимо найти уравнение суммарной кривой, продифференцировать его и приравнять вторую производную к нулю.

Затраты (R) на содержание запасов в определенный период складываются из следующих элементов:

1) суммарная стоимость подачи заказов (стоимость форм документации, затраты на разработку условий поставки, на каталоги, на контроль исполнения заказа и др.);

2) цена заказываемого комплектующего изделия;

3) стоимость хранения запаса.

Математически можно представить затраты в следующем виде:

R = A*S/Q+ S*C+ I*Q/2, (12.1)

где С – цена единицы заказываемого комплектующего изделия.

Q – размер заказа;

А – стоимость (затраты) подачи одного заказа, руб.;

S – потребность в товарно-материальных ценностях за определенный период, шт.;

I – затраты (стоимость) на содержание единицы запаса, руб./шт.

Величину затрат необходимо минимизировать: RÞmin.

Дифференцирование по Q дает формулу расчета оптимального размера заказа (формулу Вильсона, иногда встречается фамилия Уилсона):

где Q* – оптимальный размер заказа, шт.;

По данным учета затрат известно, что стоимость подачи одного заказа составляет 200 руб., годовая потребность в комплектующем изделии – 1550 шт., цена единицы комплектующего изделия – 560 руб., применяемый размер заказа 50 шт., стоимость содержания комплектующего изделия на складе равна 20 % его цены. Определить оптимальный размер заказа Q* на комплектующее изделие и суммарные затраты R.

Решение. Используя формулу 12.2, определяем оптимальный размер заказа по имеющимся исходным данным:

Во избежание дефицита комплектующего изделия можно округлить оптимальный размер заказа в большую сторону. Таким образом, оптимальный размер заказа на комплектующее изделие составляет 75 шт.

R = A*S/Q+ S*C+ I*Q/2=200*1550/50+1550*560+0,2*560*50/2=877000 руб.

Размер партии - это величина последовательно произведенного товара без перерывов либо переключений в технологическом процессе.

В чем значимость определения оптимального размера партии?

Оптимальный размер партии приводит к уменьшению потерь по складу, процентов на имущество, расходов по перенастройке. Следовательно, разделение объема товаров, производимого за год, на доли приводит к значительному снижению расходов.

Наилучшему размеру партии для производителя противодействует выгодный размер партии для реализации. Расходы по перенастройке становятся при данном варианте расходами по регистрации заказа.

В чем заключается особенность серийного производства?

Серийное производство оптимально для групп товаров сходных по технологическим процессам при изготовлении. Спустя некоторое время возникает необходимость в перенастройке к выпуску иного товара. Вышеприведенный рисунок демонстрирует, что продукция А, В, С производится последовательно на одной технологической линии.

Перерыв в технологическом процессе для пуска в производство нового товара приводит к простою и появлению не связанных с размером партии расходов - постоянные серийные затраты. Это расходы на перенастройку и наладку производственных мощностей.

При увеличении размера партии увеличиваются и постоянные серийные затраты. В пересчете на единицу продукции эти расходы сокращаются при увеличении размера партии, производимой без перерывов или перенастройки технологического процесса - дигрессивное поведение затрат.

Серийное производство требует четкой координации объема производства, серии и последовательности изготовления товаров. Потребности в разных товарах должны исполняться предприятием без задержек.

Каковы варианты удовлетворения годовой потребности в товаре?

У бизнесмена есть несколько вариантов насыщения потребности в товаре в течение года:

1) Единственная партия равная объему годовой потребности:

  • увеличение пропорциональных серийных затрат, а именно расходов по складу и процентов на имущество;
  • единичные расходы на перенастройку;
  • низкий уровень постоянных серийных затрат;
  • вероятность не насыщения потребностей по другим видам товаров.

2) Некоторое количество партий, насыщающих годовую потребность:

  • уменьшение складских расходов и расходов на имущество;
  • увеличение расходов на перенастройку.

Итак, главная задача - поиск наиболее эффективного размера партии, при котором единица произведенного товара будет приносить минимальные постоянные и пропорциональные серийные затраты.

Какие расходы являются основными при серийном производстве?

При серийном изготовлении товаров на предприятии появляются расходы, нуждающиеся в более полном рассмотрении:

A ) Расходы по складу:

  • складские расходы - заработная плата, расходы на поддержание функциональности складских площадей;
  • калькуляционные проценты - это расходы коррелирующие с объемами хранящегося на складе имущества.

Обе позиции могут быть снижены путем спланированного сокращения объема товаров на сладе. Нижний предел в данном случае - это страховой запас.

Уменьшение складских расходов и калькуляционных процентов вызывает противодействие со стороны увеличивающихся расходов на перенастройку технологического процесса и вероятности не насыщения потребности в определённом виде товаров. Выход из этой ситуации - поиск оптимального размера партии.

Б) Расходы на перенастройку:

  • зависят от продолжительности процесса перенастройки;
  • не зависят от размера партии;
  • в пересчете на единицу товара уменьшаются с увеличением размера партии;
  • состоят из: 1) затрат простоя; 2) затрат на необходимые технические средства и оборудование; 3) заработной платы; 4) вспомогательных расходов.

Этапы нахождения оптимального размера партии

Чтобы найти наиболее приемлемый вариант размера партии нужно:

1. Найти количество партий:

где n - количество партий, M - годовой объем реализуемого товара, m -наиболее приемлимый размер партии, произведенный без перерыва либо перенастройки технологического процесса.

2. Вычислить постоянные серийные затраты всех серий:

где K F - общие постоянные затраты на перенастройку всех серий, K f - серийные затраты для одной партии.

где K L - размер суммарных складских расходов, K l - ставка расходов по складу и калькуляционных процентов в пересчёте на единицу товара за период.

4. Определить суммарные затраты (K):

5. Минимизация суммарных затрат приводит нас к функции:

6. Наиболее приемлемый размер партии (m) находится при сведении уравнения к дифференциальному виду:

7. Постановка условия

8. Решение уравнения относительно m

Рассмотри на примере. Прогнозируемая реализация в будущем году составит 400 000 единиц товара T. Размер постоянных серийных затрат достигает 6 000 ДМ. Расходы по складу равны 20 ДМ на единицу товара за год. Вычислим наиболее приемлемый вариант размера партии.

Итак, минимизация затрат будет достигнута при размере партии в 15 491 шт. товара.

Есть ли допущения в формуле расчета оптимального размера партии?

Допущения в формуле расчета наиболее приемлемого размера партии:

  1. бесконечность скорости процесса производства;
  2. постоянность скорости реализации;
  3. не учитывались складских потерь;
  4. неизменность постоянных серийных затрат;
  5. прямо пропорциональное изменение прочих расходов по производству;
  6. не учитывались ограничение по складским площадям.

Является ли расчет оптимального размера партии целесообразным на сегодняшний день?

Не стоит отказываться от расчета оптимального размера партии под предлогом чрезмерного расходования трудовых ресурсов. Конечно, нет необходимости определять оптимальный размер партии для каждого вида продукции, но для А и B товаров эти расчёты необходимы.

Для начала производится расчет оптимального размера партии для A-товаров, составляющих 5 процентов от объема всей продукции, но дающих около 75 процентов в переводе на доходность. Улучшение планирования и регулировки производства А-товаров приведет к значительному уменьшению затрат.

Внедрение оптимизации размера партии в сочетании с ABC-анализом значительно уменьшит производственные расходы. Этот эффект будет более значимым при повышении эффективность и снижении расходов склада.

Широкое распространение и активное использование персональных компьютеров облегчает задачи по поиску оптимального размера партии.

Является минимизация совокупных расходов на их покупку, доставку и складское хранение. При этом расходы на доставку и хранение демонстрируют разнонаправленное поведение. С одной стороны, увеличение партии поставки приводит к снижению расходов на доставку в расчете на единицу запасов, а, с другой стороны, это приводит к росту складских расходов на единицу запасов. Для решения этой задачи Уилсоном (англ. R. H. Wilson ) была разработана методика расчета оптимальной партии поставки (англ. Economic Order Quantity, EOQ ), известная также как или формула Уилсона .

Исходные положения EOQ-модели

Практическое применение EOQ-модели предполагает ряд ограничений, которые должны быть соблюдены при расчете оптимальной партии поставки:

1. Количество потребляемых запасов или закупаемых товаров заранее известно, а их потребление осуществляется равномерно в течение всего планируемого периода.

2. Стоимость организации заказа и стоимость одной единицы запасов остаются постоянными в течение всего планируемого периода.

3. Время поставки является фиксированным.

4. Замена отбракованных единиц осуществляется мгновенно.

5. Минимальный остаток запасов равен 0.

Расчет оптимальной партии поставки

В основе EOQ-модели лежит функция совокупных расходов (TC), которая отражает расходы на приобретение, доставку и хранение запасов.

p – цена покупки или себестоимость производства единицы запасов;

D – годовая потребность в запасах;

K – стоимость организации заказа (погрузка, разгрузка, упаковка, транспортные расходы);

Q – объем партии поставки.

H – стоимость хранения 1 единицы запасов в течение года (стоимость капитала, складские расходы, страховка и т.п.).

Решив полученное уравнение относительно переменной Q, мы получим оптимальную партию поставки (EOQ).

Графически это можно представить следующим образом:


Другими словами, оптимальная партия поставки представляет собой такой объем (Q), при котором значение функции совокупных расходов (TC) будет минимальным.

Пример . Годовая потребность компании по производству строительных материалов в цементе составляет 50000 т по цене 500 у.е. за тонну. При этом стоимость организации одной поставки составляет 350 у.е., а стоимость хранения 1 т цемента в течение года 2 у.е. В этом случае размер оптимальной партии поставки составит 2958 т.

В этом случае количество поставок за год составит 16,9 (50000/2958). Дробная часть 0,9 означает, что последняя 17-ая поставка будет выработана на 90%, а оставшиеся 10% перейдут остатком на следующий год.

Подставив оптимальную партию поставки в функцию совокупных расходов мы получим 25008874 у.е.

TC = 500*50000 + 50000*350/2958 + 2*2958/2 = 25008874 у.е.

При любом другом размере партии поставки сумма совокупных расходов будет выше. Например, для 3000 т она составит 25008833 у.е., а для 2900 т 25008934 у.е.

TC = 500*50000 + 50000*350/3000 + 2*3000/2 = 25008833 у.е.

TC = 500*50000 + 50000*350/2900 + 2*2900/2 = 25008934 у.е.

Графически потребление запасов можно представить следующим образом, при условии, что их остаток на начало года равен оптимальной партии поставки.


Учитывая исходные предположения EOQ-модели о равномерном потреблении запасов оптимальная партия поставки будет вырабатываться до нулевого остатка при условии, что в этот момент будет доставлена следующая партия.